LCR166.珠宝的最高价值
链接:LCR166.珠宝的最高价值
难度:Medium
标签:数组、动态规划、矩阵
简介:给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?。
题解 1 - cpp
- 编辑时间:2023-03-08
- 执行用时:8ms
- 内存消耗:9MB
- 编程语言:cpp
- 解法介绍:dp[i][j]表示i行j列时最多能拿多少礼物。
class Solution {
public:
int maxValue(vector<vector<int>>& grid) {
int n = grid.size(), m = grid[0].size(), dp[205][205] = {0};
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
dp[i][j] = grid[i][j];
if (i == 0 && j != 0) dp[i][j] += dp[i][j - 1];
else if (i != 0 && j == 0) dp[i][j] += dp[i - 1][j];
else if (i != 0 && j != 0)dp[i][j] += max(dp[i - 1][j], dp[i][j - 1]);
}
}
return dp[n - 1][m - 1];
}
};
题解 2 - python
- 编辑时间:2023-03-08
- 执行用时:64ms
- 内存消耗:17.6MB
- 编程语言:python
- 解法介绍:同上。
class Solution:
def maxValue(self, grid: List[List[int]]) -> int:
n, m = len(grid), len(grid[0])
dp = [[grid[i][j] for j in range(m)] for i in range(n)]
for i in range(n):
for j in range(m):
if i == 0 and j != 0:
dp[i][j] += dp[i][j - 1]
elif i != 0 and j == 0:
dp[i][j] += dp[i - 1][j]
elif i != 0 and j != 0:
dp[i][j] += max(dp[i - 1][j], dp[i][j - 1])
return dp[n-1][m-1]
题解 3 - rust
- 编辑时间:2023-03-08
- 执行用时:4ms
- 内存消耗:2.5MB
- 编程语言:rust
- 解法介绍:同上。
impl Solution {
pub fn max_value(grid: Vec<Vec<i32>>) -> i32 {
let (n, m) = (grid.len(), grid[0].len());
let mut dp = vec![vec![0; m]; n];
for i in 0..n {
for j in 0..m {
dp[i][j] = grid[i][j];
if i == 0 && j != 0 {
dp[i][j] += dp[i][j - 1];
} else if i != 0 && j == 0 {
dp[i][j] += dp[i - 1][j];
} else if i != 0 && j != 0 {
dp[i][j] += dp[i - 1][j].max(dp[i][j - 1]);
}
}
}
dp[n - 1][m - 1]
}
}